АННОТАЦИИ РАБОЧИХ ПРОГРАММ МАТЕМАТИЧЕСКОГО И ОБЩЕГО ЕСТЕСТВЕННОНАУЧНОГО УЧЕБНОГО ЦИКЛА

программы подготовки специалистов среднего звена (ППССЗ) среднего профессионального образования базовой подготовки по специальности среднего профессионального образования **09.02.03** «Программирование в компьютерных системах»

В соответствии с ППССЗ по специальности 09.02.03 «Программирование в компьютерных системах» математический и общий естественнонаучный учебный цикл включает следующие учебные дисциплины:

EH.01	Элементы высшей математики
EH.02	Элементы математической логики
EH.03	Теория вероятностей и
	математическая статистика

Рабочие программы учебных дисциплин включают разделы:

- 1. Паспорт рабочей программы учебной дисциплины
- 2. Структура и содержание учебной дисциплины
- 3. Условия реализации рабочей программы учебной дисциплины
- 4. Контроль и оценка результатов освоения учебной дисциплины

УЧЕБНАЯ ДИСЦИПЛИНА «Элементы высшей математики»

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ

1.1. Область применения программы

Содержание программы реализуется в процессе освоения студентами ППССЗ с получением полного общего образования в соответствии с ФГОС СПО по специальности: 09.02.03 «Программирование в компьютерных системах».

1.2. Место дисциплины в структуре ППССЗ:

Дисциплина входит в математический и общий естественнонаучный учебный цикл.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины:

В результате освоения дисциплины обучающийся должен уметь:

- Выполнять операции над матрицами и решать системы линейных уравнений;
- Решать задачи, используя уравнения прямых и кривых 2-го порядка на плоскостях;
- Применять методы дифференциального и интегрального исчисления;
- Решать дифференциальные уравнения;
- Решать прикладные задачи в области профессиональной деятельности. В результате освоения дисциплины обучающийся должен знать:
 - Основы математического анализа линейной алгебры, аналитической геометрии;
 - Основы дифференциального и интегрального исчисления;
 - Основы теории комплексных чисел;
 - Значение математики в профессиональной деятельности.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Рабочая программа учебной дисциплины содержит описание распределения объема времени по всем видам учебной работы.

Тематический план

- Тема 1. Действительные числа
- Тема 2. Числовые последовательности
- Тема 3. Теория пределов
- Тема 4. Дифференциальное исчисление функции одной действительной переменной
- Тема 6. Интегральное исчисление функции одной действительной переменной.
- Тема 7. Теория рядов.
- Тема 8. Обыкновенные дифференциальные уравнения.

Тема 9. Системы линейных уравнений.

Тема 10. Действия с матрицами.

Тема 9. Вектора и действия с ними.

Тема 8. Аналитическая геометрия.

Описание содержания обучения по данной дисциплине помимо тематического плана включает:

- характеристику уровня усвоения учебного материала,
- конкретное описание учебного материала,
- содержание лабораторных работ и практических занятий,
- описание самостоятельной работы обучающихся.

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

Программа учебной дисциплины включает следующие данные:

- требования к минимальному материально-техническому обеспечению образовательного процесса;
- информационное обеспечение обучения: перечень рекомендуемых учебных изданий, интернет-ресурсов, дополнительной литературы.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Рабочая программа содержит перечень результатов обучения (умений и знаний) и соответствующие им формы и методы контроля и оценки результатов обучения.

УЧЕБНАЯ ДИСЦИПЛИНА

«Элементы математической логики»

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ

1.1. Область применения программы

Содержание программы реализуется в процессе освоения студентами ППССЗ с получением полного общего образования в соответствии с ФГОС СПО по специальности: 09.02.03 «Программирование в компьютерных системах».

1.2. Место дисциплины в структуре ППССЗ:

Дисциплина входит в математический и общий естественнонаучный учебный цикл.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины:

В результате освоения дисциплины обучающийся должен: уметь:

- формулировать задачи логического характера и применять средства математической логики для их решения;
- строить таблицы истинности для формул логики упрощать формулы логики;
- -представлять булевы функции в виде формул заданного типа, проверять множество булевых функций на полноту;
- -выполнять операции над множествами;
- -выполнять операции над предикатами, записывать области истинности предикатов, формализовать предложение с помощью логики предикатов;
- -исследовать бинарные отношения на заданные свойства.

знать:

- основные принципы математической логики, теории множеств и теории алгоритмов;
- формулы алгебры высказываний;
- методы минимизации алгебраических преобразований;
- основы языка и алгебры предикатов

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Рабочая программа учебной дисциплины содержит описание распределения объема времени по всем видам учебной работы.

Тематический план

Ввеление.

Раздел 1. Понятие.

Тема 1.1. Понятие.

Раздел 2. Формулы логики.

Тема 2.1. Логические операции. Формулы логики. Таблица истинности.

- Тема 2.2. Законы логики. Равносильные преобразования.
- Раздел 3. Булевы функции.
- Тема 3.1 Функции алгебры логики.
- Тема 3.2. Операция двоичного сложения. Многочлен Жегалкина.
- **Тема 3.3.** Полнота множества функций. Важные замкнутые классы. **Теорема Поста.**
- Раздел 4. Предиканты. Бинарные отношения.
- Тема 4.1. Предиканты.
- Тема 4.2. Бинарное отношение.
- Раздел 5. Метод математической индукции.
- Тема 5.1. Метод математической индукции.
- Раздел 6. Комбинаторика.
- Тема 6.1. Комбинаторика.
- Раздел 7. Основы теории графов.
- Тема 7.1. Неориентированные графы.
- Тема 7.2.. Ориентированные графы.
- Раздел 8. Элементы теории автоматов.
- Тема 8.1. Элементы теории автоматов.

Описание содержания обучения по данной дисциплине помимо тематического плана включает:

- характеристику уровня усвоения учебного материала,
- конкретное описание учебного материала,
- содержание лабораторных работ и практических занятий,
- описание самостоятельной работы обучающихся.

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

Программа учебной дисциплины включает следующие данные:

- требования к минимальному материально-техническому обеспечению образовательного процесса;
- информационное обеспечение обучения: перечень рекомендуемых учебных изданий, интернет-ресурсов, дополнительной литературы.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Рабочая программа содержит перечень результатов обучения (умений и знаний) и соответствующие им формы и методы контроля и оценки результатов обучения.

УЧЕБНАЯ ДИСЦИПЛИНА

«Теория вероятностей и математическая статистика»

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ

1.1. Область применения программы

Содержание программы реализуется в процессе освоения студентами ППССЗ с получением полного общего образования в соответствии с ФГОС СПО по специальности: 09.02.03 «Программирование в компьютерных системах».

1.2. Место дисциплины в структуре ППССЗ:

Дисциплина входит в математический и общий естественнонаучный учебный цикл.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины:

В результате освоения дисциплины обучающийся должен уметь:

- применять стандартные методы и модели к решению вероятностных и статистических задач;
- пользоваться расчётными формулами, таблицами, графиками при решении статистических задач;
- применять современные пакеты прикладных программ многомерного статистического анализа;

В результате освоения дисциплины обучающийся должен знать:

- основные понятия комбинаторики;
- основы теории вероятностей и математической статистики;
- основные понятия теории графов

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Рабочая программа учебной дисциплины содержит описание распределения объема времени по всем видам учебной работы.

Тематический план

Введение.

- Раздел 1. Вероятности случайных событий.
- Тема 1.1. Элементы комбинаторики.
- Тема 1.2. Вероятность случайного события.
- Тема 1.3. Алгебра событий.
- Тема 1.4. Полная вероятность и формула Байеса.
- Тема 1.5. Повторение испытаний.
- Раздел 2. Случайная величина.
- Тема 2.1. Распределение дискретной случайной величины.
- Тема 2.2. Числовые характеристики дискретной случайной величины.
- Тема 2.3. Непрерывная случайная величина.
- Тема 2.4. Законы распределения непрерывной случайной величины.

- Тема 2.5. Закон больших чисел. Центральная предельная теорема.
- Раздел 3. Элементы математической статистики и случайные процессы.
- Тема 3.1. Выборочный метод математической статистики.
- Тема 3.2. Характеристики выборки.
- Тема 3.3. Основные понятия теории статистических гипотез.
- Тема 3.4. Моделирование случайных величин.

Описание содержания обучения по данной дисциплине помимо тематического плана включает:

- характеристику уровня усвоения учебного материала,
- конкретное описание учебного материала,
- содержание лабораторных работ и практических занятий,
- описание самостоятельной работы обучающихся.

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

Программа учебной дисциплины включает следующие данные:

- требования к минимальному материально-техническому обеспечению образовательного процесса;
- информационное обеспечение обучения: перечень рекомендуемых учебных изданий, интернет-ресурсов, дополнительной литературы.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Рабочая программа содержит перечень результатов обучения (умений и знаний) и соответствующие им формы и методы контроля и оценки результатов обучения.